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“Multiple Microstrip Lines on a
Multilayered Cylindrical Dielectric
Substrate on Perfectly Conducting Wedge
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Abstract—The quasi-TEM characteristics of a class of cylin-
drical microstrip lines are rigorously determined. The class of
microstrip lines considered consists of multiple infinitesimally
thin strips on a multilayered dielectric substrate on a perfectly
conducting wedge. Expressions for the potential distribution in-
side and outside the dielectric substrate, charge distribution on
the strips, and capacitance matrix of the microstrip lines are
derived. The problems of a microstrip line on a cylindrically
capped wedge and on a cylindrical dielectric substrate on per-
fectly conducting core are also considered as special cases. Sample
numerical results based on the derived expressions are given and
discussed.

’ I. INTRODUCTION

ERFECTLY conducting wedges and cylindrically capped

wedges are widely utilized in the design of cylindrical
radiating structures for aircraft and missiles [1]. A typical
radiating structure in such applications consists of a cylin-
drical-rectangular perfectly conducting patch fed with a mi-
crostrip line. In this paper, the quasi-TEM characteristics of a
class of cylindrical microstrip lines are rigorously determined.
The class of microstrip lines considered consists of multiple
infinitesimally thin strips on a multilayered dielectric substrate
on a perfectly conducting wedge (see Fig. 1).

The objective of the analysis is to determine the capacitance
matrix of the multiconductor transmission line system. The
inductance matrix of the multiple microstrips may then be
determined, apart from a multiplicative constant, as the inverse
of the capacitance matrix that would exist if the multilayered
dielectric substrate were replaced by free space [2]. Once the
capacitance and inductance matrices are known, the complete

behavior of the system can be determined, to the transmission °

line approximation, by multiconductor transmission line theory
[3, ch. 6]. '

The method of analysis utilized is drawn along the lines
of [4]. It relies on the derivation of the exact potential
distributions outside and inside the dielectric substrate. The
potentials are constructed in such a way that the continuity
of the potential, and hence the continuity of the tangential
component of the electric field, across the various dielectric
interfaces are automatically enforced. Boundary condition
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Fig: 1. Multiple microstrip lines on a multilayered cylindrical dielectric

substrate on a perfectly conducting wedge.

equations for the problem are obtained from enforcing the
potential to have the specified constant voltages on the strips,
and from satisfying the jump discontinuity in the normal
derivative’ of the potential across . the -dielectric interfaces.
These equations are subsequently combined and solved using
Galerkin’s method. Expressions for the charge distributions
on 'the strips and elements of the capacitance matrix of the
microstrip lines are then obtained. The analysis is subsequently
specialized to the problems of a microstrip line on a cylindri-
cally capped wedge and on a cylindrical dielectric substrate
on a perfectly conducting core (see Fig. 2). Sample numerical
results based on the derived expressions are also given and
discussed. '

II. FORMULATION

In this section, the exact potential distributions outside and
inside the mutilayered dielectric substrate are constructed.
~ The potential in the free space outside the dielectric sub-
strate is constructed such that it satisifes the Laplace equation
Vsz(p, <P) = Osp Z a1, S 14 S 27 — Y, SUbjeCt to the
boundary conditions that Vy(ay, p) = ®1(p),y < p < 2 —7,
and Vo(p,7) = Vo(p, 21 — ) = 0,p > a1. Furthermore, the
potential must be both finite and continuous everywhere and
regular at infinity. The solution of the Laplace equation in
this region can be obtained using the method of separation of
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Fig. 2. (a) Microstrip line on a perfectly conducting cylindrically capped
wedge. (b) Cylindrical microstrip line on a perfectly conducting cylindrical
core.

~ variables [5, Sect. 4-2] as

oo nx()
Vo(p, @) = Z Vn (%>

n=1

- sin(nx(7)(¢ — 7)) Y

where

1 27—
Uy = / ®1(e)
Yy

=
- sin(nx(7)(¢ — 7)) de ()

and x(y) = 7/2(r — 7).

The potential in the outer layer of the dielectric substrate
is constructed such that it satisfies the Laplace equation
V2V1(p,¢) = 0,02 < p < a1,7 < ¢ < 2m—~. The boundary
conditions on the potential in this layer are as follows: at
p = a,Vi(a1,9) = ®:1(p),y < ¢ < 27 — vy, whereas at
p = a2, Va(az,¢) = ®2(¢),y < ¢ < 27 — ~y. Furthermore,
Vi(p,v) = Vi(p,2m — v) = 0,a2 < p < ay. In addition, the
potential must be both finite and continuous at all points in
the layer and on its boundaries. The solution of the Laplace
equation in this layer can likewise be obtained using the
method of separation of variables as

hE

Vl(pa 90) =

(Vi Fa(p)
1

vnGn(p)) sin(nx(v)(¢ = 7)) 3

1 2m—~y
Vp = T—~ /y @Q(QD)

- sin(nx(7)(¢ — 7)) dy “4)

+ 3

where
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and F,, and G, are functions defined as

1
Fulp) = R2nx(v) — 1

p=om )

nx(v) X (7))
. | prx( (_p_) — (ﬂ)
a p
_ 17

N Oa p =02

1

Gnlp) = R2ox() — 1
Ny (E)nx(v) ~ <£>nx(v)
p az
_ 0’
=11

where R = aj1/as (R > 1).

Finally, the potential in the inner layer of the dielectric sub-
strate is constructed such that it satisfies the Laplace equation
V2Va(p, ) = 0,0 < p < ag,y < ¢ < 21 — 1, subject to the
boundary conditions that Va(ag, ) = ®a(p),y < ¢ < 2w —7,
and Va(p, ) = Va(p, 27 —v) = 0,0 < p < ag. Furthermore,
the potential must be both finite and continuous everywhete,
in particular at the origin. Consequently, using the method of
separation of variables, Vs is readily obtained as

o0 P nx ()
VZ(paQO) = Zyn(a_Q)

n=1

- sin(nx(v) (e — 7)) @)

= a
oo ©

III. EQUATIONS OF THE PROBLEM

The potentials outside and inside the dielectric substrate
have been constructed in the previous section in such a way
that their continuity across the dielectric interfaces, and hence
the continuity of the tangential components of the electric field
[6, Sect. 3-2], are automatically enforced. There therefore only
remains to satisfy the requirement of constant potentials, or
zero tangential electric field, at the strips, viz. '

@P((p) = V},,
p=ap,0p S <Py ()]
where p = 1, 2. Furthermore, the normal component of the
displacement vector D = ¢F = —eV) must be discontinuous

across each dielectric interface by the amount of the surface
free charge density o on the strip. Thus,

0 ) 2] :
€rp %Vp(apa (P) — €rp—1 (T);Vp—l(afp’ ‘P)

1
= { ;%(S")’ ap <9 < fp )
0, otherwise

where p = 1,2, and ¢, = 1.

IV. GALERKIN’S SOLUTION

Equation (8) and the last line of (9) are sufficient for
the complete evaluation of the potentials ®; and ®5 on the
dielectric interfaces. A Galerkin’s solution of the equations of
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the problem can be accomplished by expanding ®; and @5 in
terms of a complete set of orthogonal functions on the interval
[v, 27 — ]. The expansion functions need also be chosen so
that ®(y) = ®(2r — ) = 0. The appropriate expansions of
®; and P, are therefore ¢

= v sin(kx(v)(¢ — 7))

k:l

®,(p) (10)

where vpp,p = 1,2,k = 1,2,.-.
determined.

Substituting (10) into (2) and (4), the coefficients of expan-
sion for the potential distributions are readily found as

, are real coefficients to be

(11
(12)

Furthermore, substituting (10), together with (11) and (12),
into (8) and the last line of (9), there then results after some
simple manipulations the following set of equations.

At p = ay:

/
Vi = Nk

Vi = Vag.

Z vk sin(kx(v)(@ — 7))

k=1
=W, a1 <p < By (13)
> vikkx(7)(1 + €1 Ru) sin(kx(v) (v — 7))
k=1
~ €1 ZVZka YRz sin(kx(v) (¢ — 7)) -
=0, ’YS<P<a10rﬂ1<<P§27T—’Y- (14)
At p = a9
> vasin(kx(1)(¢ = 7))
k=1
= Vs, a < < B (15)

_Grlzylkkx )R sin(kx(7) (¢ — 7))

+ Z varkx(7)(€r2 + €1 Rux) sin(kx(7) (9 — 7))

k=1
=0, y<¢p<morfa<ep<2r—1 (16)
where
R2kx(v) 11
By = o) 1 17
Rlx()

Testing the two pairs of equations (13)—(14) and (15)-(16)
with sin(mx(v)(¢ — v)),m = 1,2,---, there finally results
the system of algebraic equations

X1 X>12:H:'Ul:|
Xo1 Xpa|[w2

- [Vl VQHZ]

(19)
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where the submatrices X 11, X 12, X21,X22, V1, and V5 of the
Galerkin’s system of equations are given by ‘

X11 = [Ssmi(0a, B1) + kx(7)(1 + er1 Rix)

* (S8mr(7, 1) + Ssmi(Br, 27 — )] (20)
X1z =[—€r1kx(7)Rar(S5mi(7y, o)
+ Ssmr(B1,2m — 7))] (21)
Xo1 = [—er1kx(7)Ror(Ssmr (v, @2)
+ S8mr(B2,2m —7))] (22)
X2 =[Ssmr(a2, B2) + kx(7){(€r2 + €01 R1x)
* (S8mr(7, @2) + Ssmr(B2,2m — 7)) (23)
Vo =[Vpbmi], p=12 | 24
and the vectors v, and s,,p = 1,2, are given by
Vp = [Vpi] (25)
8p = [Sm (0, Bp)}- (26)

The functions Sy, (z,y) and Ssmr(x, y) denote, respectively,
the integrals of sin(mx(y)(¢ — 7)) and sin(mx(y)(¢ —
v)) sin(kx(v)(¢ — <)) over the interval [z,y] [4], and i
is the Kronecker delta function (where énp = 1 if m = k,
and is zero otherwise).

Solution of the system of equations (19) determines the
expansion coefficients vpr,p = 1,2,k = 1,2, .-+, and hence,
the complete potential distributions outside and inside the
dielectric substrate.

V. CHARGE DISTRIBUTIOS ON THE STRIPS AND
CAPACITANCE MATRIX OF THE MICROSTRIP LINE

Substituting Vo, V4, and V, into the first line of (9), the
surface free charge densities on the strips are readily found as

) Z—;Ul((ﬁ)
Z viekx(7)(1 + €x1 Rag) sin(kx () (e — 7))
k=1
— &1 Y varkx(7) Rax sin(kx(7)(¢ — 7)),
k=1
o1 << P @7)
)
o o2(p
= —&1 Y virkx(7) Rax sin(kx(v)(w = 7))
k=1
+ > varkx(7)(er2 + €1 Rag) sin(kx(7) (¢ = 7)),
T se < @8)

The total charge induced on either strip can now be obtained
by integrating the charge density along its corresponding arc
length. Thus, integrating both sides of (27) and (28) with
respect to ¢, tespectively, over the intervals [aq,(1] and
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[, B2], the total charges on the strips are given by

%Ql(@) = vikkx(7)(1 + er1 Rax)Silar, f1)

k=1

— €1 Zl/zkkx(’)’)Rszk(ahﬂl)
k=1

iQWP) =—€r1 Z vk x () Rar Sk (a2, B2)

k=1

29

oo
+ Z varkx(y)(€ra + €1 R1k) Sk (a2, B2X30)
k=1

The total charges Q1 and Q7 are related to the strip yol_tages Vi
and V, through the capacitance matrix C = eg[(—)""7 C;,lax2

according to [5, Sect 3-5]

Q| _ | Cu —Cn|iW

Q@2 —Co O || Vo]
Apart from the normalization factors %ep, the clements of the
capacitance matrix are given by

€2y

CijI%

7 i,7,l=1,2.

(32)

?

Viy=0

Consequently, C1; and Cz; can be computed using (29) and
(30), where vpr,p = 1,2,k = 1,2,---, are determined by
solving the system of equations (19) and V2 = 0. Similarly,
C12 and Cy; can be computed using (29) and (30) with
Vpiy» = 1,2,k = 1,2, .-, determined by solving the system
of equations (19) with V1 = 0.

VI. ALTERNATIVE EXPRESSIONS FOR THE LINE CAPACITANCES

An alternative set of more explicit, although less direct,
expressions for the elements of the capacitance matrix is
given in this section. The new expressions are arrived at by
expanding ®; and &, in the form

&,(0) =V, Y pisin (kx(v)(e — 7)) (33)

k=1

where p = 1,2, rather than as in (10). The result of this
simple modification is a Galerkin’s system of equations similar
to (19), except that the new vectors of coefficients v; and
v, are postmultiplied with V1 and V5, respectively. In this
case, the new vectors of coefficients are solved for under the
conditions Vi = V> = 1 (even mode excitation) and Vi =
—V5 = 1 (odd mode excitation). Using the potential expansion
(33) to obtain the charge distributions on the strips, then
integrating the derived charge distributions over the lengths of
the corresponding strips, a matrix relationship for the applied
voltages and total charges induced on the strips similar to (31)
is obtained. The elements of the modified capacitance matrix
are then given by

Ci = Z Pkx(7y)
k=1

- (1 + €1 R1x) Sk, B1) (34
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Cor =261 Y vrkx(7)
k=1

- RopSk{a1,51) 35)
Gia =261 3 Prihx(v)

: R2§'1k(a27ﬁ2) (36)
G = 3" k()

I-G:(irz + €01 R1%) Sk (2, B2). 37

Because of the linearity of the multiple microstrip line sys-
tem, the original and modified line capacitances are related
according to

Cz] = %(éz]'|V1=Vz=1 + (_)J_lci]IV1=~Vz=1)’

ij=1,2 (38)

VII. MICROSTRIP LINE ON A CYLINDRICALLY CAPPED
WEDGE AND THE CYLINDRICAL MICROSTRIP LINE

The previous analysis is readily specialized to the problem
of a microstrip line on a cylindrically capped wedge. In this
case, the inner strip is extended to cover the whole inner
dielectric interface. Thus, setting a2 = =y and fy = 27 — 7,
there results X51 = 0, X252 = [(7—7)6mk], and s2 = 0. It then
follows that v = 0, and hence, @5 = 0, as should have been
expected. The Galerkin’s system of equations then reduces to

Xl]_'U]_ = 81 (39)

where the multiplication factor V] is suppressed from the right-
hand side for convenience. Solution of the system of equations
(39) determines the expansion coefficients 11,k = 1,2, -,
and hence, the complete potential distributions outside and
inside the dielectric substrate. The charge distribution on the
strip and capacitance of the microstrip line are then given by

Z—;ff(@) = g virkx(v)(1 + €p1 Rax)
- sin(kx(7)(e — 7)) (40)
C=¢ i ik X (V)(1 + €r1Rik)
. g’:(lal,ﬁl). (41)

Another important cylindrical microstrip line that can be
considered as a special case is the cylindrical microstrip line
on a cylindrical dielectric substrate on perfectly conducting
core [7], [8]. This is the case when the wedge angle for
the cylindrically capped wedge is equal to x. The charge
distribution on the strip and capacitance of the microstrip line
in this case are equal to one half the charge distribution and
capacitance given by (40) and (41), where the coefficients of
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Fig. 3. Convergence of line capacitances for multiple microstrip lines on a
multilayered cylindrical diclectric substrate on a perfectly conducting wedge
(R = 15,7y = 45°%, &1 = 4.7, and &9 = 12): 01,2 = 167.5° and
B2 = 192.5°. .
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Fig: 4. Line capacitances for the same multiple microstrip line configuration

in Fig. 3 as the inner strip (#2 —oa = 25°) changes position while an identical
strip is placed on the outer boundary at o; = 167.5° and 8; = 192.5°.

expansion vy, k = 1,2, -, are obtained by solving (39) with
v =m/2and x(y) = 1

VIII. NUMERICAL RESULTS AND DISCUSSIONS

The analysis in the paper has been implemented as a
Fortran program. The potential distributions on the dielectric
interfaces, charge distributions on the strips, and capacitance
matrix of the microstrip lines have been computed for both the
wedge and cylindrically capped wedge geometries for a wide
variety of parameter values.

Insight into the convergence characteristics of the solution -

can be gained by considering the alternative set of expressions
for the line capacitances given in Section VI. Examination
of (17) and (18) shows that Ry; tends (decreases) to “1,”
and hence R tends to zero, monotonically as % tends to
infinity. Furthermore, it can be shown that, for any given
N,Rig < 14 107", and hence, Ryox < 107V, where
K is an integer given by o

K= (1 _ 1) log,o(1 + 10N +log10(2)
7r logo(R) ’

y<mR>1 (42)

where [z] denotes the smallest integer greater than or, equal to
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Fig. 5. Line capacitance surfaces Cj;(er1,€r2),6,5 =-
25°-wide, edge-coupled strips (ay = 155°,8; = 180° =
B2 = 203°): R = 1.5 and v = 45°.

1,2 for
a9, and

. For large N, say N = 7, then K = [N/(2x(v) log;o(R))].
Inspection of the linear graph G(K,~y) given by (42) shows
that the number of terms K decreases as either R or « is
increased. As an example, let v = 45° and N = 7. Hence, it
follows from (42) that K = 16 for R = 1.5 and K = 67 for
R = 1.1. It should be pointed out that this does not necessarily
imply that convergence is achieved after only 2K tefms since
the coefficients of expansion obtained by solving the matrix
equation (19), modified in the manner indicated in Section VI,
need not have actually converged after only so many terms.
In fact, since |kx(v)Sk(ap,Bp)| = |cos(kx(7)(op — 7)) —
cos(kx(7)(Bp = M) < 2,p = 1,2, convergence of the line
capacitances is assured with the convergence of &, and &,.
Since Ppx,p = 1,2 are coefficients for Fourier series, then
Ppr = O(1/k?),0 > 1 as k tends to infinity, i.e., there exists
an integer L and a constant A such that |7,,| < A/k® for
all kK > L [9, Sect. 5-8]. Simple algebra then shows that
the tail end terms (k > max(2K, L)) of the series for Ca;
and Cy, are bounded by 4A4e.;R™kx(y))/k?. The bounds
for the terms of the series for Ciq and Cay are, respectively,
2A(1 + €,1)/k%,2A(er2 + €71) /K% k > max(K, L). As can
be seen, the rate of convergence improves-as R is increased.
This is readily attributed to the fact that coupling between the
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Fig. 6. Potential distribution on the free space—diclectric interface of a mi-
crostrip line on a cylindrically capped wedge (R = 2,y = 45°, a3 = 135°,
and S1 = 225°).

strips decreases as R is increased, so that a fewer number of
terms would be needed to represent a weaker field in the outer
layer of the dielectric substrate. The rate of convergence also
improves as the strips become wider because of the pulse-like
waveforms of <i>1 and <i>g [4].

The convergence patterns for the line capacitances of mul-
tiple microstrip lines on a multilayered dielectric substrate on
wedge (R = 1.5,7 = 45° €1 = 4.7, and ¢.o = 12) are
shown in Fig. 3 under conditions of maximum coupling, i.e.,
a1 = az (= 167.5°) and B; and Gz (= 192.5°). The line ca-
pacitances for the same multiple microstrip line configuration
are plotted in Fig. 4 as the inner strip (82 — g’ = 25°) is
moved while the position of the outer strip is kept constant.
Furthermore, the three-dimensional line capacitance surfaces
Cij(€r1,€r2),%,7 = 1,2 are shown in Fig. 5 for R = 1.5 and
v = 45° in the case of 25°-wide, edge-coupled strips (a1 =
155°,8; = 180° = g, and 2 = 205°). The surfaces are
clearly planar. Finally, the potential distributions on the free
space—dielectric interface of a microstrip line on a cylindrically
capped wedge (R = 2,v = 45°, 07 = 135°, and 31 = 225°)
are shown in Fig. 6 for different dielectric constants ¢,
whereas the three-dimensional effective dielectric constant
surfaces €rei(€ri, R) = Ci(er1,R)/Ci(er1 = 1,R) for a
microstrip line symmetrically located on a cylindrically capped
wedge are shown in Fig 7 for different strip widths. Apart from
values of R close to unity, the effective dielectric constant
sutfaces are planar. Thus, the sensitivity of the normalized
propagation constant (characteristic impedance) with respect
to changes of the substrate’s dielectric constant or R is a
bounded monotonically increasing (decreasing) function of the
dielectric constant or R [4].

IX. SUMMARY

The quasi-TEM characteristics of a class of cylindrical
microstrip lines have been rigorously determined in this paper.
The class of microstrip lines considered consists of multiple
infinitesimally thin strips on a multilayered dielectric substrate
on a petfectly conducting wedge. Expressions for the poten-
tial distribution inside and outside the dielectric substrate,
charge distribution on the strips, and capacitance matrix of
the microstrip lines have been derived. The analysis has then
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Ercft

Ereff

Erett

Fig. 7. Effective dielectric constant surfaces ¢ye (€71, R) = Ci(er1, R)/
Ci(er1 = 1, R) for a symmetrical microstrip line on a cylindrically capped
wedge for different strip widths: v = 45°.

been specialized to the problems of a microstrip line on a
cylindrically capped wedge and on a cylindrical dielectric
substrate on a perfectly conducting core. Sample numerical
results based on the derived expressions have also been given
and discussed.
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