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Multiple Microstrip Lines on a

Multilayered Cylindrical Dielectric

Substrate on Perfectly Conducting Wedge
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Abstract— The quasi-TEM characteristics of a class of cylin-

drical microstrip lines are rigorously determined. The class of
microstrip lines considered consists of multiple infinitesimally

thin strips on a multilayered dielectric substrate on a perfectly

conducting wedge. Expressions for the potential distribution in-
side and outside the dielectric substrate, charge distribution on
the strips, and capacitance matrix of the microstrip lines are
derived. The problems of a microstrip line on a cylindrically
capped wedge and on a cylindrical dielectric substrate on per-
fectly conducting core are also considered as special cases. Sample
numerical results based on the derived expressions are given and

discussed.

I. INTRODUCTION

PERFECTLY conducting wedges and cylindrically capped

wedges are widely utilized in the design of cylindrical

CJ=b,I a.

\
radiating structures for aircraft and missiles [1]. A typical

radiating structure in such applications consists of a cylin-

drical–rectangular perfectly conducting patch fed with a mi-

crostrip line. In this paper, the quasi-TEM characteristics of a

class of cylindrical microstrip lines are rigorously determined.

The class of microstrip lines considered consists of multiple

infinitesimally thin strips on a multilayered dielectric substrate

on a perfectly conducting wedge (see Fig. 1),

The objective of the analysis is to determine the capacitance

matrix of the multiconductor transmission line system, The

inductance matrix of the multiple microstrips may then be

determined, apart from a multiplicative constant, as the inverse

of the capacitance matrix that would exist if the multilayered

dielectric substrate were replaced by free space [2]. Once the

capacitance and inductance matrices are known, the complete

behavior of the system can be determined, to the transmission

line approximation, by mr.dticonductm transmissicrn line theory

[3, ch. 6].

The method of analysis utilized is drawn along the lines

of [4]. It relies on the derivatim Qf the exact potential

distributions outside and inside the dielectric substrate. The

potentials are constructed in such a way that the continuity

of the potential, and hence the continuity of the tangential

component Qf the electric field, across the various dielectric

interfaces are automatically enforced. Boundary condition
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Fig: 1. Multiple microstrip lines on a multilayered cylindrical dielectric

substrate on a perfectly conducting wedge.

equations for the problem are obtained from enforcing the

potential to have the specified constant voltages on the strips,

and from satisfying the jump discontinuity in the normal

derivative of the potential across the dielectric interfaces.

These equations are subsequently combined and solved using

Galerkin’s method. Expressions for the charge distributions

on ‘the strips and elements of the capacitance matrix of the

microstrip lines are then obtained, The analysis is subsequently

specialized to the problems of a microstrip line on a cylindri-

cally capped wedge and on a cylindrical dielectric substrate

on a perfectly conducting core (see Fig. 2). Sample numerical

results based on the derived expressims are also given and

discussed.

II. FORMULATION

In this section, the exact potential distributions outside and

inside the multilayered dielectric substrate are constructed.

The potential in the free space outside the dielectric sub-

strate is constructed such that it satisifes the Laplace equation

V2VO(P, W) = O, P z al, T S 9 S 27r – T, subject to the

boundary conditions that Vo(al, y) = @I(P), v < P < 2T–T,

and Vo(p, T) = Vo(p, 2n – T) = O,p > al. Furthermore, the

potential must be both finite and continuous everywhere and

regular at infinity. The solution of the Laplace equation in

this region can be obtained using the method of separation of
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(a)

(b)

Fig. 2. (a) Microstrip line on a perfectly conducting cylindrically capped

wedge. (b) Cylindrical microstrip line on a perfectly conducting cylindrical
core.

variables [5, Sect. 4-2] as

Vlj(p,p) =

co
al nx(-f)

50.V; —
P

(1)

where

1 f.2T-7

. sin(nx(-y)(~ – ~)) cl~ (2)

and x(~) = r/2(n – ~),

The potential in the outer layer of the dielectric substrate

is constructed such that it satisfies the Laplace equation

V2V1(p, q) = O,a2 < p < al, y < p < 2n–7. The boundary

conditions on the potential in this layer are as follows: at

P = al,ul(al,p) = Ol(p),? < v < 27 –~, whereas at

P = ~2, V2(~2, P) = @2(YY), ~ < P < Q~ – ~. Furthermore,

VI(P, V) = VI(P, 27r – v) = O,,az < P < al. In addhion, the

potential must be both finite and continuous at all points in

the layer and on its boundaries. The solution of the Laplace

equation in this layer can likewise be obtained using the

method of separation of variables as

Vl(p,p) =

where

&;Fn(p)
n=l

+ vnGn(p)) sin(nx(~)(~ – ~)) (3)

(4)

and Fn and G% are functions defined as

1
‘n ‘p) = R2nx(7) _ 1

-{

1, p=al—
o, p=az

1
‘~(p) = R2nx(7) _ 1

-{

o; ~=al—
1, p=az

(5)

(6)

where R = al/a2 (R > 1).

Finally, the potential in the inner layer of the dielectric sub-

strate is constructed such that it satisfies the Laplace equation

V2V2(p, q) = 0,0< p < a2, -y < p < 27r –7, subject to the

boundary conditions that lh(uz, p) = @2(P), v < P < 2fi-’Y,

and Vz(p, ~) = Vz(p, 27r — T) = O,0 < p < az. Furthermore,

the potential must be both finite and continuous everywhere,

in particular at the origin. Consequently, using the method of

separation of variables, Vz is readily obtained as

‘()
nx(-r)

V2(P, P) = ~.% ;

n=l

. sin(nx(~)(~ – ~)). (7)

III. EQUATIONS OF THE PROBLEM

The potentials outside and inside the dielectric substrate

have been constructed in the previous section in such a way

that their continuity across the dielectric interfaces, and hence

the continuity of the tangential components of the electric field

[6, Sect. 3-2], are automatically enforced. There therefore only

remains to satisfy the requirement of constant potentials, or

zero tangential electric field, at the strips, viz.

where p = 1, 2. Furthermore, the normal component of the

displacement vector D = eE = –eVV must be discontinuous

across each dielectric interface by the amount of the surface

free charge density u on the strip. Thus,

‘VP(aP, 9) – ~r)p-l$VP-l(aP39)
“pap

‘{

:%(P),

o,

where p = 1,2, and C.. = 1.

IV. GALERKIN’S SOLUTION

Equation (8) and the last line of (9) are sufficient for

the complete evaluation of the potentials @l and 02 on the

dielectric interfaces. A Galerkin’s solution of the equations of
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the problem can be accomplished by expanding +1 and +2 in

terms of a complete set of orthogonal functions on the interval

[7, 27r – -y]. The expansion functions need also be chosen so

that O(T) = @(27r – y) = O. The appropriate expansions of

01 and 02 are therefore a

O,(p) = ~ Vpk sin(~x(-y)(p – 7)) (lo)
k=l

where .vPk,p = 1,2, k = 1,2, . . . . are real coefficients to be

determined.

Substituting (10) into (2) and (4), the coefficients of expan-

sion for the potential distributions are readily found as

V: = Vlk (11)

~k = ~zk. (12)

Furthermore, substituting (10), together with (11) and (12),

into (8) and the last line of (9), there then results after some

simple manipulations the following set of equations.

At p = al:

At p = az:

k=l

– l.%,— Cl!a<p<pz (15)
w

where

~zkx(v) + 1

‘lk = R2kx(7) _ 1
(17)

Rzk = 2
@fx(7)

R2kx(~) _ 1 “
(18)

Testing the two pairs of equations (13)-(14) and (15>(16)

with sin(m,x(~) (q – -y)), m = 1,2, ..., there finally results
the system of algebraic equations

‘[Vid::] (19)

where the submatrices XII, XIZ, X21, X22, VI, and V2 of the

Galerkin’s system of equations are given by

Xll = [Ssm~(&l, PI) + kx(~)(l + c,~R~k)

. (Sl?mk(~, ~1) + s~mk(~~, 2m - -y))]

XM = [–Cr~kX(~)Rzk(S$mk(T, O!~)

+ Ssmk(pl, 2~ – T))]

Xzl = [–6r~kx(~)R2k(sSmk(~, 04

+ s&nk(f12, 27T – 7))]

XZZ = [ssmk(~z, /32) + kX(7’)(15rZ + 6r~R~k)

o (ssmk(~, 04 + ssmk(~z, 2’T - ~))]

Vp = [Vphnk], p=l,2

and the vectors VP and SP,p = 1,2, are given by

vp = [~pk]

.% = [Sn(%l, Dp)l.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

The functions Sm(Z, y) and Ssmk (x, y) denote, respectively,

the integrals of sin(mx(~)(p – ~)) and sin(mx(~)(p –

‘Y)) sin(~x(v) (v – ~)) over the inteml [z, y] [4], and t%k
is the Kronecker delta function (where (?&k = 1 if m = k,

and is zero otherwise).

Solution of the system of equations (19) determines the

expansion coefficients ~pk, P = 1,2, k = 1,2,.””, and hence,

the complete potential distributions outside and inside the

dielectric substrate.

V. CHARGE DISTRIBUTION ON THE STRIPS AND

CAPACIT~CE MATRIX OF THE MICROSTRIP LINE

Substituting Vo, 111, and V2 into the first line of (9), the

surface free charge densities on the strips are readily found as

%q(p)
q

= ‘fj-%d7)(1+%-lRlk)sin(kX(’Y)(9- ?’))
k=l

- G, ~~2k~X(T)Rzksin(~X(T)(P - ‘Y)),

k=l

cll<~<pl (27)

The total charge induced on either strip can now be obtained

by integrating the charge density along its corresponding arc

length. Thus, integrating both sides of (27) and (28) with

respect to p, respectively, over the intervals [al, ~1] and
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[042, 02], the total charges on the strips are given by

m

:QI(P) = ~ ZWJ$X(T)(l + %I~Ik)sk(@I, h)
k=l

- G, ~ v2kJw(7)R2ksk(@, >/i) (29)

k=l
m

:Q2(P) = “%1 ~ v1k~x(7)~2kSk(~2,~2)

k=l
cc

+ ~ ~2k~x(7)(~.2 + GlRlk)sk(a2, 62X30)

k=l

The total charges Q1 and Qz are related to the strip voltages V1

and V2 through the capacitance matrix C = Co[( – )i+~ C;j ]a~a

according to [5, Sect 3-5]

Apart from the normalization factors +6., the elements of the

capacitance matrix are given by

~,, = Q
~J Vj ~ieo’

i,.j, l = 1,2. (32)

Consequently, Cll and Cal can be computed using (29) and

(30), where Vpk, P = 1,2,k = 1,2,..., are determined by

solving the system of equations (19) and Vz = O. Similarly,

Cla and CZZ can be computed using (29) and (30) with
vPk, p=l,2, k=l,2, ..., determined by solving the system

of equations (19) with V1 = 0.

VI. &TERNATIVE EXPRESSIONSFORTHE LINE CAPACITANCES

An alternative set of more explicit, although less direct,

expressions for the elements of the capacitance matrix is

given in this section. The new expressions are arrived at by

expanding @1 and 02 in the form

cc

f,(p) = VP ~ ti,k sin (kx(v)(p – 7)) (33)
Ic=l

where p = 1, 2, rather than as in (10). The result of this

simple modification is a Galerkin’s system of equations similar

to (19), except that the new vectors of coefficients VI and

V2 are postmultiplied with V1 and Vz, respectively. In this

case, the new vectors of coefficients are solved for under the
conditions VI = Va = 1 (even mode excitation) and VI =

–Va = 1 (odd mode excitation). Using the potential expansion

(33) to obtain the charge distributions on the strips, then

integrating the derived charge distributions over the lengths of

the corresponding strips, a matrix relationship for the applied

voltages and total charges induced on the strips similar to (31)

is obtained. The elements of the modified capacitance matrix

are then given lby

/$=1

.(1+ 6T,R,k)sk(a,,/?,) (34)

~21=2G-152M4
k=l

. R2ksk(Q!l, /?l) (35)

G2 =%-I Ewx(?)
k=l

. &ksk(a2, /6’2) (36)
w

622 = ~ fia&X(~)

k=l

. (%2+ GlRlk)sk(~2, B2). (37)

Because of the linearity of the multiple microstrip line sys-

tem, the original and modified line capacitances are related

according to

c,, = +(’5,+1=V,=1+ (–) ’-%ijlvl=-v,=l),

i,j = 1,2. (38)

VII. MICROSTRIP LINE ON A CYLINDRICALLY CAPPED

WEDGE AND THE CYLINDRICAL MICROSTRIP LINE

The previous analysis is readily specialized to the problem

of a microstrip line on a cylindrically capped wedge. In this

case, the inner strip is extended to cover the whole inner

dielectric interface. Thus, setting CYa= v and ,82 = 27r – T,

there results X21 = O, X22 = [(m–~)dmk], and S2 = O. It then

follows that V2 = O, and hence, @a = O, as should have been

expected. The Galerkin’s system of equations then reduces to

X117)1= S1 (39)

where the multiplication factor V1 is suppressed from the right-

hand side for convenience. Solution of the system of equations

(39) determines the expansion coefficients VM, k = 1,2,...,

and hence, the complete potential distributions outside and

inside the dielectric substrate. The charge distribution on the

strip and capacitance of the microstrip line are then given by

Another important cylindrical microstrip line that can be

considered as a special case is the cylindrical microstrip line

on a cylindrical dielectric substrate on perfectly conducting

core [7], [8]. This is the case when the wedge angle for

the cylindrically capped wedge is equal to r. The charge

distribution on the strip and capacitance of the microstrip line

in this case are equal to one half the charge distribution and

capacitance given by (40) and (41), where the coefficients of
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Fig. 3. Convergence of line capacitances for multiple microstrip lines on a

multilayered cylindrical dielectric substrate on a perfectly conducting wedge

(1? = 1.5,7 = 45 °,G.1 = 4.7, and G-2 = 12): cn,z = 167.5° and
61,2 = 192.5°.

50, I

,.
I

12d
50 100 150 200 250 300

Center Position of Inner Strip

Fig. 4. Line capacitances for the same multiple microstrip line configuration

in Fig. 3 as the inner strip ((32 –az = 25° ) changes position while an identical
strip is placed on the outer boundary at ctl = 167.5° and (31 = 192.5°.

expansion vM, k = 1,2, ..., are obtained by solving (39) with

~ = m/2 andx(~) = 1

VIII. NUMERICAL RESULTS AND DISCUSSIONS

The analysis in the paper has been implemented as a

Fortran program, The potential distributions on the dielectric

interfaces, charge distributions on the strips, and capacitance

matrix of the microstrip lines have been computed for both the

wedge and cylindrically capped wedge geometries for a wide

variety of parameter values.

Insight into the convergence characteristics of the solution

can be gained by considering the alternative set of expressions

for the line capacitances given in Section VI. Examination

of (17) and (18) shows that RM tends (decreases) to “l,”

and hence Rm tends to zero, monotonically as k tends to

infinity. Furthermore, it can be shown that, for any given

N, RIK < 1 + 10-N, and hence, R2,2K ~ 10-N, where
K is an integer given by

[( )-y loglo(l + lo~+l”g’10(2)
K= l––

T 1loglo(R) ‘

T< T,R>l (42)

where [m] denotes the smallest integer greater than or, equal to

14

[12

10

G1 ;

4

2

!0 10

(4

14
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8

6

4

2

!0 10

(b)

(c)

Fig, 5. Line capacitance surfaces C;j (6,1,%2), i, ~ = 1,2 for

25° -wide, edge-coupled strips (al = 155°, @1 = 180° = az, and

/32 = 2050): R = 1.5 and ~ = 45o.

z, For large N, say N = 7, then K = [N/(2x(7) logo)].

Inspection of the linear graph G(K, ~) given by (42) shows

that the number of terms K decreases as either R or ~ is
increased. As an example, let ~ = 45° and N = 7. Hence, it

follows from (42) that K = 16 for R = 1.5 and K = 67 for

R = 1.1. It should be pointed out that this does not necessarily

imply that convergence is achieved after only 2K terms since

the coefficients of expansion obtained by solving the matrix

equation (19), modified in the manner indicated in Section VI,

need not have actually converged after only so many terms.

In fact, since lkx(~)Sk(aP, &)\ = I COS(kX(T)(~P – ‘Y)) –

COS(kx(y)(& – T))! S 2, p = 1,2, convergence~of the l$ne
capacitances is assured with the convergence of @1 and 02.

Since i&t, p = 1,2 are coefficients for Fourier series, then

fipk = O(l/k@), @> 1 as k tends to infinity, i.e., there exists

an integer L and a constant A such that Itipk I s A/k@ for

all k ~ L [9, Sect. 5-8]. Simple algebra then shows that
the ta~l end terms (k ~ max(2K, L)) of the series for ~21

and C12 are bounded by 4Ac,1 R– kx(~)) /ke. The bounds

for the terms of the series for ~11 and C22 are, respectively,

2A(1 + q.l)/ke, 2A(G.2 + erl)/ko, k z max(K, L). As can

be seen, the rate of convergence improves as R is increased.

This is readily attributed to the fact that coupling between the
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Fig. 6. Potential distribution on the free space–dielectric interface of a mi-
crostrip line on a cylindrically capped wedge (1? = 2, ~ = 45°, cr1 = 135°,
and L?l = 2250).

strips decreases as R is increased, so that a fewer number of

terms would be needed to represent a weaker field in the outer

layer of the dielectric substrate. The rate of convergence also

improves as the strips become wider because of the pulse-like

waveforms of & and & [4].

The convergence patterns for the line capacitances of mul-

tiple microstrip lines on a multilayered dielectric substrate on

wedge (R = 1.5,7 = 45”, G.i = 4.7, and G.2 = 12) are

shown in Fig. 3 under conditions of maximum coupling, i.e.,

al = a2 (= 167.5°) and /31 and /32 (= 192.50). The line ca-

pacitances for the same multiple microstrip line configuration

are plotted in Fig. 4 as the inner strip (P2 – tz2’ = 25° ) is

moved while the position of the outer strip is kept constant.

Furthermore, the three-dimensional line capacitance surfaces

Cij(erl, e,2), i,j = 1,2 are shown in Fig. 5 for R = 1.5 and

T = 45° in the case of 250-wide, edge-coupled strips (al =

155°, @l = 180° = a2, and /32 = 2050). The surfaces are

clearly planar. Finally, the potential distributions on the free

space-dielectric interface of a microstrip line on a cylindrically

capped wedge (R = 2, ~ = 45°, al = 135°, and 81 = 225°)

are shown in Fig. 6 for different dielectric constants cT1,

whereas the three-dimensional effective dielectric constant

surfaces Creff(G-I, R) = C1(e.l, R)/Cl(c.l = 1, R) for a

microstrip line symmetrically located on a cylindrically capped

wedge are shown in Fig 7 for different strip widths. Apart from

values of R close to unity, the effective dielectric constant

surfaces are planar. Thus, the sensitivity of the normalized

propagation constant (characteristic impedance) with respect

to changes of the substrate’s dielectric constant or R is a
bounded monotonically increasing (decreasing) function of the

dielectric constant or R [4].

IX. SUMMARY

The quasi-TEM characteristics of a class of cylindrical

microstrip lines have been rigorously determined in this paper.

The class of microstrip lines considered consists of multiple

infinitesimally thin strips on a multilayered dielectric substrate

on a perfectly conducting wedge. Expressions for the poten-

tial distribution inside and outside the dielectric substrate,

charge distribution on the strips, and capacitance matrix of

the microstrip lines have been derived. The analysis has then

10 [ p,-u,=lo”

8

6
%7 ~

2

PO 2

(a)

10

8

2

%

(b)

2

(c)

Fig. 7. Effective dielectric constant surfaces .srefi (erl, ~) = Cl (erl, R)/

CI (6,1 = 1, l?) for a symmetrical microstrip line on a cylindrically capped
wedge for different strip widths: v = 45°.

been specialized to the problems of a microstrip line on a

cylindrically capped wedge and on a cylindrical dielectric

substrate on a perfectly conducting core. Sample numerical

results based on the derived expressions have also been given

and discussed.
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